HORNSBY GIRLS HIGH SCHOOL

2010 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- o Reading Time 5 minutes
- o Working Time − 2 hours
- o Write using a black or blue pen
- o Approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown for every question
- o Begin each question in a new booklet

Total marks (84)

- Attempt Questions 1 7
- o All questions are of equal value

BLANK PAGE

Total Marks

Attempt Questions 1–7

All Questions are of equal value

Begin each question in a new booklet, writing your student number and question number in the boxes indicated. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.

Marks

- (a) The interval AB, where A is (-3, 4) and B is (1,-2), is divided **externally** in the ratio 1: 3 by the point P(x, y). Find the values of x and y.
- (b) Differentiate $\cos^{-1}(x^3)$ with respect to x.
- (c) Prove that, if $x^4 x^3 + kx 4$ has a factor of (x+1), then it also has a factor of (x-2).
- (d) Solve $\frac{x+4}{x-2} \ge 3$ for x.
- (e) Use the substitution u = 2x + 1 to evaluate $\int_0^1 \frac{4x}{2x+1} dx$.

Question 2 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) Solve (giving your answer to nearest degree): $3\cos x + 5\sin x = 5$ for $0^{\circ} \le x \le 360^{\circ}$

3

(b) The curves $y = x^2$ and y = 2x meet at x = 2. Find the angle between these curves at this point of intersection.

2

(c) Find the primitive function of $2\sin^2 x$.

2

(d) In a large school, 5% of the students have blond hair. A group of 10 students is randomly chosen.

What is the probability that:

(i) exactly one student has blond hair?

1

(ii) at least 2 students have blond hair?

2

(e)

PQ is a tangent to a circle QRS, while PRS is a secant intersecting the circle at R and S, as shown in the diagram.

2

Given that PQ = 6, RS = 5 and PR = x, find the value of x.

Question 3 (12 marks) Use a SEPARATE writing booklet.

Marks

1

1

- (a) Find the volume of the solid of revolution formed when the region bounded by the curve $y = \frac{1}{\sqrt{4+x^2}}$, the x-axis, the y-axis and the equation $x = \frac{\pi}{2}$ is rotated about the x-axis.
- (b) Find the term independent of x in the expansion of $\left(3x^2 + \frac{2}{x}\right)^6$.

(c)

NOT TO SCALE

Two points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola $x^2 = 4ay$.

The tangent at P and the line through Q parallel to the y axis intersect at point T.

The equation of the tangent at P is $y = px - ap^2$. (Do NOT prove this)

- (i) Find the coordinates of T.
- (ii) Write down the coordinates of M, the midpoint of PT.
- (iii) Determine the locus of M when pq = -1.
- (d) A sphere is being heated so that its surface area is expanding at a constant rate of 0.025 cm² per second.

Find the rate of change of the volume when the radius is 5 cm.

Question 4 (12 marks) Use a SEPARATE writing booklet.

Marks

- (a) Consider the function $f(x) = \frac{2x}{1-x^2}$.
 - (i) Show that the function is increasing for all values of x in its domain.

2

(ii) Sketch the graph of y = f(x) showing the intercepts on the axes and any asymptotes.

3

(iii) Hence, or otherwise, find the values of k such that $\frac{2x}{1-x^2} = k$

1

has two solutions.

(b) Evaluate $\lim_{x\to 0} \frac{1-\cos^2 2x}{x^2}$.

2

(c) Peter and his brother James are having a card night for themselves and 6 other friends. If they are to be seated at a round table, what is the probability that Peter and James do NOT sit next to each other?

2

(d) Find the maximum value of 2x(1-x) and hence determine the range of $y = \sin^{-1}[2x(1-x)]$ for $0 \le x \le 1$.

2

Question 5 (12 marks) Use a SEPERATE writing booklet.

Marks

3

(a) Use mathematical induction to prove that $4^n > 2n+1$, where n is a positive integer.

(b)

In the diagram above, two circles intersect at A and B.

Points C and E lie on the circles and C, B and E are collinear.

Tangents at C and E meet at D.

Show that quadrilateral AEDC is concyclic.

(c) The population, P, of a mining town after t years satisfies the equation

$$\frac{dP}{dt} = k(P-1000).$$

The population was initially 10 000, and after five years it had decreased to 8 000.

(i) Show that $P = 1000 + Ae^{kt}$ is a solution of the equation.

1

3

(ii) Find the value of A.

- 1
- (iii) Find the value of k. (Give your answer correct to 3 significant figures)
- 1

(iv) Find the number of years taken for the population to reach 5000.

2

(v) Sketch the graph of the population against time.

Question 6 (12 marks) Use a SEPARATE writing booklet.

Marks

2

2

(a) The graph of y = f(x), where $f(x) = 3x - x^3$, is shown in the diagram below.

- (i) Find the coordinates of the turning points A and B.
- (ii) Find the largest domain containing the origin for which f(x) has an inverse function.
- (iii) By considering the graph of y = f(x), find the domain of $f^{-1}(x)$.
- (iv) By considering the gradient of y = f(x), or otherwise, find the gradient of the inverse function $y = f^{-1}(x)$ at x = 0.
- (b) A particle moves in a straight line, so that its acceleration x cm from the origin is given by $\frac{d^2x}{dt^2} = 15 25x$. Initially the particle is at rest 1.6 cm to the right of the origin.
 - (i) Show that the speed is given by $s = \sqrt{30x 25x^2 + 16}$.
 - (ii) Given that the motion is simple harmonic, find the interval in which the particle moves.
 - (iii) Find the maximum speed, and the displacement where this occurs.

Question 7 (12 marks) Use a SEPARATE writing booklet.

Marks

- (a) Two of the roots of the equation $x^3 ax^2 + b = 0$ are reciprocals.
 - (i) Show that the third root is equal to -b.

2

(ii) Show that $a = \frac{1}{b} - b$.

2

(iii) Show that the 2 roots, which are reciprocals, will be real if $\frac{-1}{2} \le b \le \frac{1}{2}$.

2

Question 7 continues on page 10

(b)

O and Q are two points 2h metres apart on horizontal ground. P is a point h metres directly above O. Particle A is projected from P towards Q with speed V m/s at an angle α above the horizontal.

At the same time particle B is projected from Q towards P with speed U m/s at an angle β above the horizontal. The two particles collide T seconds after projection.

For particle A the equations of motion are: $\ddot{x}_p = 0$ and $\ddot{y}_p = -g$. It is known that its horizontal distance x_p from O, is given by: $x_p = Vt \cos \alpha$, where t is time in seconds. (**Do NOT prove this**)

(i) Use calculus to show that at time t seconds, its vertical distance y_P from O is given by:

$$y_P = Vt \sin \alpha - \frac{1}{2}gt^2 + h$$

- (ii) For particle B, write down expressions for its horizontal distance x_Q from Q and its vertical distance y_Q from Q at time t seconds.
- (iii) By considering the point of collision, find an expression for $\frac{V}{U}$ in terms of α and β .

2

2

End of paper

(a)
$$A(-3, +)$$
 $B(1, -2)$ externally 1:3

(b)
$$\frac{d}{dx} \cos^{-1}(x^{3}) = \frac{-1}{\sqrt{1-x^{6}}} \times 3x^{2}$$
$$= \frac{-3x^{2}}{\sqrt{1-x^{6}}} /$$

(C) (2(+1)) is a factor if
$$P(-i) = 0$$

$$P(-i) = (-1)^{4} - (-i)^{3} + 4z(-i) - 4$$

$$= 1 - -1 - k - 4$$

$$= -2 - k$$

$$= 0 \text{ when } k = -2 /$$
if $P(x) = x^{4} - x^{3} - 2x - 4$
if $P(x-2)$ is a factor $P(2) = 0$

if
$$P(x-2)$$
 is a factor $P(2)=0$

$$P(2) = 2^{4}-2^{3}-2\times 2-4$$

$$= 16-8-4-4$$

$$= 0$$

(d)
$$\frac{\chi+4}{\chi-2} \geqslant 3$$

 $(\chi+4)(\chi-2) \geqslant 3(\chi-2)^{2}$
 $(\chi-2)[\chi+4) - 3(\chi-2)] \geqslant 0$
 $(\chi-2)[40-2\chi] \geqslant 0$
 $\chi(\chi-2)(5-\chi) \geqslant 0$
 $\chi(\chi-2)(5-\chi) \geqslant 0$

(e)
$$\int \frac{4x}{2x+1} dx$$

= $\int \frac{2u-2}{u} \cdot du$

= $\int \frac{2u-2}{u} \cdot du$

= $\int \frac{2u-1}{u} \cdot du$

(-5,7) /

```
3005x + 550x = 5 0° 6x 6360°
Q2, a)
       R=J9+25=J34 +anx= 3 ie x= 592'
       ie J34 cos (x-x)=5
           COS (X-x) = 5
         \chi_{-}59^{\circ}a^{\prime} = 30^{\circ}58^{\prime}, 329^{\circ}a^{\prime}
        .´. x = 90°, 388°
        since o's x 5 360°, x = 90°, 389-360=28°
              <u>(è x=90°, 28°</u>
    \int 2\sin^2 x = \int 1 - \cos 2x \, dx
             = X - 1 5 is 2x + C
    i) P(B)=0.05 P(B)=0.95
       P(1B)= 19C1(0.05)(0.95)9
           = 0.31512
     ii) P(>2B) = 1-[P(OB) + P(IB)]
     = 1-[0.95"+0.315123
      = 0.0861
       x(x+5)=6^{2} PS.PR=OP
       72°+571-36=0
    (n+9)(n-4)=0
   : x=4 (x>0)
```


QUETTION 5 Prove true for n=1 A = 9000 L.4-5 = 4 R.H.S = 2+1 iii) when t=5 P = 8000 = 3 8000 = 1000 + 9000 esk esh = 7/9 : L.H.S. > R.H.S. 5k = In (7/9) : True for n=1 Assume true for n= k k = -0.0503 i.e. 4 h > 2k+1 (V) when P = 5000 5000 = 1000 + 9000 e kt Prove true for n=k+1 e kt = 4/9 i.e. 4kx > 2(kx1)+1 4kH > 2k+3 kt = In(49) now 4k > 2k+1 t = 16.12 years 4. 4k > 4(2k+1) 4 kr1 > 8k+4 4k+1 > 2k+3+6k+1 4 k+1 > 2k+3 : True for n= k+1 Since fre for n=1 etc. b) LDCE = LCAB = x (L in alternate segment)

LDEC = LEAB = y (L in alternate segment)

1 1-1- = x+4 LCDE + X+y = 180 (angle som ACED) ! AEDC cyclic quadrilateral (opposite L's supplementary) () i) P = 1000 + Aek+ = Aek+ = P-1000 - () = k(P-1000) by substituting () ii) when t=0, P=10000 10000 = 1000 + Ae

Question 6 (b) $\frac{1}{3}v^2 = 15x - 25x^2 + C$ $f(x) = 3x - x^3$ $f(x) = 3 - 3x^2$ When t=0, x=1.6, V=0het f(x) = 0 $\frac{1}{2} \cdot 0 = 15(1.6) - 25(1.6)^2 + c.$ 0 = 3 -3x2 x= =1 When x = 1, f(1) = 3 - 1V2 = 30x - 25x2+18 $\alpha = -1$, $f(-1) = -3 - (-1)^3$ S= \ \ 30 \ \ - 25 \ \ 2 + 18 :. A = (1,2) : $B \in (-1,-2)$ 0=30x-25x2+18 i) hargest domain: $-1 \in x \in I$ $x = 30 \pm \sqrt{900 + 4(25)(16)}$ iii) Roey of f(x) for restricted degracion is $-2 \le y \le 2$ = 30 ± 50 ユニーショル デーデー : Domain of fi(x) is Portile noves on interial -2 <x < y $(x) = 3-3x^2$ (ii) Men speed at x= = +x f(0) = 3radicit of evene fiction $8 = \sqrt{30(\frac{3}{5})} - 25(\frac{3}{5})^2 + 16$ = $\sqrt{2}$ (b) $\frac{d}{dx}\left(\frac{1}{d}v^2\right) = 15-2x$ i. Most speed is 5 cm of when some 3 cm to eight af 5 wight. $\frac{1}{2}v' = \int (5-2x)dx$

$(0.7a)$ $x^3 - ax^2 + b = 0$
1) let roots be α, \pm, β
foduct of roots: x. J. B = -d
2, B=-b
11) -b is a most
$P(-b) = (-b)^3 - a(-b)^2 + b = 0$
$-b^3 - ab^2 + b = 0$
$ab^{2} = -b^{3} + b$
$a = -b + \frac{1}{b}$
$\frac{111}{2} x^{3} - \left(b - \frac{1}{b}\right)x^{2} + b = 0$
Sun of roots 20 a tive: x 1 + x (-b) + (-b) - c = 0
x x a
: 1-xb- <u>b</u> -0
$x - x^2b - b = 0$
$ie bx^2 - x + b = 0$
real roots $\Delta > 0$
$ -4b^2>0$
$(1-2b)(1+2b) \ge 0$
$ie -\frac{1}{2} \le b \le \frac{1}{2}$
2 2
A STATE OF THE PROPERTY OF T
The state of the s
The second control of
and the second of the second o
A COMMINSTER OF THE PROPERTY O

....

والمعاوية الروميات والوار والمعاونية معاصفية المراجع والعا

New Commence of the Commence o

.

- which says the says and says a page

Company of the second of the second of the second of

Q7b) i)	<u>ÿρ=-9</u>
y=V=0 = V000	yρ=∫-g dt gt+C,
<u> </u>	$\frac{y_p = -g^{t} + V = \hat{v} \propto}{y = \int -g^{t} + V = \hat{v} \propto dt}$
t =0 y = h	$y = -\frac{9t^2}{2} + Vt = 0$ $y = -\frac{9t^2}{2} + Vt = 0$ $y = -\frac{9t^2}{2} + Vt = 0$
ii)	$y_{\alpha} = \frac{2h - Ut \cos \beta}{2}$ $y_{\alpha} = \frac{-gt^2}{2} + Ut \sin \beta$
īii)	$2h - Ut\cos\beta = Vt\cos\alpha$ $Vt\cos\alpha + Ut\cos\beta = 2h$ t = 2h
$\frac{V\cos\alpha + U\cos\beta}{-gt^2 + Vt\sin\alpha + h} = -\frac{gt^2 + Ut\sin\beta}{2}$	
	h=Utsip- Vtsix t=h
	$\frac{2h}{2h} = \frac{h}{h}$
	VCOX+UCOβ U=β-V=α 2U=iβ-2V=iα = VCO3α+Ucoβ VCO3α+2V=iα = 2U=iβ-Ucoβ
$V(\cos x + 2\sin x) = U(2\sin - \cos \beta)$ $V = 2\sin - \cos \beta$ $U = \cos x + 2\sin \alpha$	